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Abstract—Reaching unelectrified populations in the developing
world with distributed solar requires aggressive cost optimiza-
tion of generation and storage. Conventional solar generation
architectures using photovoltaic panels, sealed lead acid batteries,
and inverters show room for cost improvement. Using data
collected from photovoltaic microgrid users and simulations we
demonstrate potential cost reductions using alternate technologies
and architectures. Reducing losses from power conversion could
lower wholesale energy costs by 20% while improved battery
chemistries could lower costs by up to 50%.

I. INTRODUCTION

The cost of renewable and distributed energy must be
lowered to be competitive with fossil energy systems. In the
developing world, solar photovoltaic systems are extremely
attractive because of the low operating cost. However, the
high initial costs, especially of energy storage, threaten the
viability of this as an option for the people of the world lacking
electricity. Private energy service companies (ESCOs) have
started supplying power where utilities have failed to reach.
However, when operating as unsubsidized private companies,
ESCOs will be especially sensitive to the initial cost of
generation and the ability to collect tariffs. Since these systems
are often paid for by the revenue collected from electricity
sales, lowering initial cost and effectively collecting tariffs are
important. [4] Our previous work has focused on the improved
collection of tariffs through mobile commerce and prepayment
[2]. This work will focus on potential cost reductions which
allow the same level of energy to be delivered for a lower total
investment and cost per kWh.

Our observations of electricity use in newly electrified vil-
lages show usage patterns that are difficult to serve efficiently
with existing technology. Villages whose primary electricity
use is lighting, television, and cell phone charging have wide
variation in power from day to night. This wide variation in
power requires that inverters often operate below their optimal
operating point, where they are less efficient. These villages
also consume most of their energy at night. Storage costs
are then a large part of the system cost making it a target
for cost reduction. This work quantifies the impact of these
load features on the cost of electricity as well the benefit
of two possible solutions: increases in inverter efficiency,
and increases in battery efficiency. The simulations use both
measured demand data from rural villages and synthetic data

to test different loads. The measured data is collected from
customers who have recently been provided with a near-grid-
quality electrical connection and are paying for that power on
a per kilowatt-hour basis. Most discussion of cost reduction
focuses on the photovoltaic panel cost but this work shows that
work on power conversion and storage could yield significant
cost reductions as well.

II. SIMULATION DESCRIPTION

The simulation takes as input the location of the system and
the simulated or measured energy demand of the customers
and provides as an output the minimum panel size and battery
capacity that will meet the energy demand. This model is
intended to allow comparisons between systems and load
profiles rather than provide accurate guidance for system
sizes over a typical meteorological year. The simulation takes
as input the hourly load profile from a set of either real
or hypothetical customers. The model then uses a series of
assumptions on battery and solar panel parameters to calculate
the power and storage at each hour. The battery is considered
to be a simple energy storage device with perfect efficiency
during charging and an efficiency of ηB on discharge. We
can calculate the energy in the battery in discrete time steps
according to the following equation.

EB(t+ ∆t) = EB(t) + Pcharge · ∆t− Pdischarge · ∆t

ηB

Where Pcharge is the power flow when the photovoltaic
production is greater than the inverter demand and Pdischarge

is the power flow when the inverter demand is greater than the
photovoltaic power available. They are given by the following
equations.

Pcharge =

{
0 Pinv > Ppv

Ppv − Pinv Pinv < Ppv

Pdischarge =

{
Pinv − Ppv Pinv > Ppv

0 Pinv < Ppv

Where Pinv is the DC power demanded by the inverter and
Ppv is the power being delivered by the charge controller. Pinv

is calculated using the efficiency of the inverter as a function
of AC load according to

Pinv =
PAC

ηinv(PAC)



Rated Power 750 W
Peak Efficiency 94%

No-load Power Consumption 13 W

TABLE II
INVERTER ASSUMPTIONS FOR MODELING.

Panel Efficiency 13.5%
Panel Latitude 14 N

Panel Cost $1/W
Panel Lifetime 20 years

TABLE III
SOLAR PANEL ASSUMPTIONS FOR MODELING.

Where PAC is the hourly power demanded by the consumers
of the microgrid.

The difference equation is run in a loop where the panel
size in the model is adjusted until the energy remaining in the
battery at the end of the simulation is equal to the energy at the
start of the simulation. The minimum battery size is then the
peak-to-peak variation of the battery energy time series. A time
series trace is shown in Figure 1. Once the simulation finds
a solution where the starting and final storage are equal, the
model outputs the minimum battery size to meet the storage
need at 100% depth of discharge and the minimum solar panel
size to meet the demand. Based on panel size and battery size
output along with the assumptions on panel cost and battery
cost and life, the model predicts the net present value (NPV)
of the system over the life of the system. In this model we use
a 7% discount factor and a 20-year time horizon. The battery,
inverter, and panel assumptions for these simulations are listed
in Table I, Table II, and Table III.
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Fig. 1. Time series of simulation. The DC load of the inverter is plotted
along with the solar generation as a function of hour. The solar panel size is
adjusted until the battery energy at the end of the simulation is the same as
the start value.

III. SIMULATION RESULTS AND DISCUSSION

A. Types of Loads Simulated

The simulation results compare the performance of hypo-
thetical systems to the baseline system and report potential
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Fig. 2. Efficiency curves for baseline and proposed system. The proposed is
a hypothetical system that has uniform efficiency at all power output levels.

improvements. These simulations use 5 different load data sets,
3 are simulated and 2 are measured data from our existing
microgrids. Each of these loads has been normalized so that
the total daily energy for each of the loads is equal. This
normalization allows the comparison of efficiencies based on
the load shape rather than overall level of consumption. We
define a “Night” load that has the entire day’s load occurring
between 6pm and midnight. We also define a “Day” load that
occurs between 9am and 3pm and a “Constant” load that is
evenly spread across the entire day. In addition to these three
hypothetical loads, we also use loads representative of the
measured customer loads at our microgrids. The “Lighting”
village load uses a representative day from one of the village
microgrids and has a small constant load and a large nighttime
load. The “Freezer” village load is from one of our microgrids
using a freezer to provide ice for sale and is very close to the
“Constant” load in shape.

B. Baseline System

The simulated baseline system is based on the system we
have installed in the field. The inverter efficiency for this
baseline system is shown in Figure 2 as the “Baseline” curve.
The battery used in the baseline system is the Sealed Lead
Acid battery in Table I. The solar panel assumptions used
in the baseline and all other simulations are listed in Table
III. This baseline system is used for comparison against the
improvements discussed below.

C. Impact of load shape on storage and generation

To demonstrate the effect of the load profile on the genera-
tion and storage capacity of the system, we calculate the panel
and battery size for the five loads described above. The storage
and generation necessary to service a given daily amount of
energy can vary depending on what time of day that energy is
delivered. We calculate the minimum generation and storage
for each of these five loads. We do not include balance of
system costs or distribution costs since these will be much



Battery Chemistry Initial Cost Lifetime Optimal Storage
(USD/kWh) (yr) DOD Efficiency

Sealed Lead Acid (SLA) $140 2 50% 75%
Lithium Iron Phosphate (LFP) $1000 6 100% 95%

Lead Carbon (PbC) $140 6 50% 75%

TABLE I
BATTERY ASSUMPTIONS FOR MODELING.
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Fig. 3. Cost of electricity for different load profiles using Baseline inverter
and battery system and hypothetical and measured loads. Storage costs are
the dominant cost in each of these systems.

less sensitive to these load types. Table IV shows a detailed
output of the panel and battery sizes in kWp and kWh. It
also shows the NPV costs for storage and generation over an
assumed 20 year lifetime with a 7% discount factor. The NPV
is necessary to account for the multiple battery replacements
over the life of the solar system. Figure 3 shows these results
in terms of an estimated cost of delivered electricity. The table
and figure show that storage cost is much larger than the
generation cost for all of the loads. There are variations in
the size and price of the panel necessary to meet the load,
but the cost impact is small compared to the storage costs.
The lowest total cost is delivered for the “Day” load since
there is very little storage necessary. The highest total cost is
incurred for the “Night” load since the storage demand is the
greatest. The large fraction of initial and operating cost needed
for storage led us to investigate ways of reducing the storage
capacity and cost through more efficient power conversion and
battery chemistries.

D. Inverter Efficiency

We simulate the cost savings of an inverter system that is
less sensitive to load variations in this section. In a system
with a wide variation in power levels the inverter can be a
significant loss of power. A typical inverter is inefficient at
loads below its preferred operating point. If the load is usually
close to this high efficiency point, the lower efficiencies at low
power are not important. If however, as we observe, there is
a high variability in the power output where daytime loads
are very small but evening loads are greater, this inefficiency
can have a significant impact. If the system is run inefficiently
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Fig. 4. The hypothetical “Flat” inverter efficiency curve results in a modest
reduction of electricity cost.

during the daytime, the inefficiency burden only impacts the
amount of generation capacity needed. If the system is run
inefficiently during the evening, both the generation and the
storage costs are affected, multiplying the penalty. Late-night
and early morning cellphone charging and vampire loads can
cause this inefficiency. To address this issue, inverter manufac-
turers have created inverters with a master-slave feature that
allows a chain of inverters to turn on and off based on total
load. To demonstrate this effect, we run our simulation with
a hypothetical power conversion device that has an efficiency
equal to the peak efficiency of the baseline inverter at any
power level. Table V shows the detailed simulation results.
The increase in inverter efficiency reduces the generation and
storage needed for four of the five load types in comparison
with the values in Table IV. The reductions in battery NPV
and solar NPV could offset the additional cost of a dedicated
low-power inverter with a cross-over circuit for when the load
requires the high-power inverter. Figure 4 shows the impact on
the delivered price for the five loads we consider in this work.
These cost and capacity savings are on the order of 20%.

E. Battery Chemistry

The largest potential for cost reduction can come from
improved battery technologies. New battery chemistries could
reduce the fraction of investment that goes toward storage of
electricity. In terms of initial cost, batteries are comparable
to the photovoltaic panel cost but their frequent replacement
makes the storage cost dominant over the lifetime of the
system. The incumbent battery technology is lead acid with
both flooded lead acid (FLA) and sealed lead acid (SLA) being
used widely. Emerging technologies of interest are Lithium



Load Type Panel Capacity Minimum Battery Battery NPV Solar NPV
(kWp) Size (kWh) (USD) (USD)

Day 0.59 0.76 1306 595
Night 0.74 4.92 8421 738

Constant 0.70 3.08 5281 704
Lighting 0.73 3.66 6270 727
Freezer 0.70 3.21 5500 703

TABLE IV
IMPACT OF LOAD TYPE ON SYSTEM SIZE AND COST. LOADS ARE NORMALIZED TO 3.0 KWH PER DAY.

Load Type Panel Capacity Minimum Battery Battery NPV Solar NPV
(kWp) Size (kWh) (USD) (USD)

Day 0.50 0.88 1509 498
Night 0.62 4.26 7289 621

Constant 0.53 2.33 3993 532
Lighting 0.55 2.81 4819 553
Freezer 0.53 2.44 4176 532

TABLE V
IMPACT OF INVERTER NON-IDEALITY ON SYSTEM SIZE. SIMULATIONS USE SINGLE-POINT EFFICIENCY INVERTER AND SLA BATTERY. LOADS ARE

NORMALIZED TO 3.0 KWH DAILY.

Iron Phosphate (LFP) and Lead Carbon (PbC). Several factors
impact the life-cycle cost of storage in a battery: round
trip power efficiency, cost per kWh stored, optimal depth of
discharge, and cycle life. The values used in the simulation
for each battery type are found in Table I. Relative to SLA
batteries, LFP batteries have better cycle life, higher specific
cost, and better turnaround efficiency. PbC batteries are not
yet mature but promise improved cycle life and likely similar
specific cost and turnaround efficiency.

The initial battery cost is given by

CB = Estorage
1

ηB

1

DODoptimal
cB

Where Estorage is the storage necessary, ηB is the round trip
energy efficiency, DODoptimal is the desired operating point
of the battery for long life, and cB is the initial cost of the
battery per kWh. The total cost over the life of the system
depends on the cycle life of the battery.

We simulate the impact of these on system size and total
cost in Table VI. Figure 5 shows the impact of battery type on
the per kWh cost of electricity. For the case of typical village
data, the lifetime cost of lead acid and LFP are similar. If LFP
costs reach the $500/kWh cost targets mentioned in the context
of electric vehicles, these batteries will be a clear choice. If
PbC batteries are able to maintain their cost while improving
cycle life, they will provide a clear improvement in the life-
cycle cost. Both of these battery simulations are speculative
but given the dominance of storage costs in these systems,
attention to emerging battery technologies is worthwhile.

IV. DISCUSSION / FUTURE WORK

While the simulation results discussed are based on tech-
nology speculation, we want to encourage cost reductions
through newer technologies. We have emphasized supply and
generation optimizations in this work but would like to point
out the importance of efficient appliances. Efficient appliances
allow services to be delivered at the lowest possible price.
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Fig. 5. Cost of electricity for different battery chemistries.

Our microgrids use LED lighting to achieve the best cost for
lighting in terms of price per kilolumen-hour delivered. The
televisions that we have observed in these microgrids have
been inefficient cathode ray tube (CRT) televisions with power
loads of over 50W. The price per hour of entertainment could
be lowered by providing more efficient liquid crystal display
(LCD) televisions. In addition to increasing the amount of
services that the consumer can gain for a given amount, these
reductions in demand reduce the amount of generation and
storage needed. These demand side improvements can lower
the system size and deliver the services people want for less
power.

In addition to improving the efficiency of the end-uses of the
system, efficiency can be gained by some architectural choices.
Casillas and Kammen show that the introduction of meters to
a rural microgrid lowered usage [5]. Thomas and coauthors
estimate that LED lighting using DC building circuits lower
costs relative to AC connected LED circuits [6]. Since all
loads in our residential areas are DC loads, AC inverter costs
and inefficiencies may be unnecessary. The IEEE/Sirona Haiti



Load Type Battery Panel Capacity Minimum Battery Battery NPV Solar NPV
Type (kWp) Size (kWh) (USD) (USD)

Lighting SLA 0.73 3.66 6270 727
Lighting LFP 0.62 2.93 7043 615
Lighting PbC 0.73 3.66 2466 727
Freezer SLA 0.70 3.21 5500 703
Freezer LFP 0.61 2.57 6186 606
Freezer PbC 0.70 3.21 2163 703

TABLE VI
SIMULATION RESULTS FOR BATTERY CHEMISTRIES. NET PRESENT VALUE IS CALCULATED AT 7% OVER 20 YEAR TIME HORIZON.

Rural Electric Project uses only DC circuitry and DC-only
laptop charging stations are being developed for schools [7].
The addition of meters to a grid installation or the use of a
DC only architecture could also lower overall life-cycle cost
for new installations.

V. SUMMARY

We find that improving no-load and low-load power con-
sumption of the inverter can reduce storage and generation
needs and lower the cost of electricity 20% for many load
types. Future battery chemistry types have the potential to
deliver 50% reductions in the wholesale cost of electricity to
consumers. These results use both simulated data and data
gathered from rural villages using solar microgrid systems.

APPENDIX

The simulations in this paper use both simulated energy
demand data and data collected from customers in Mali. This
section describes the solar photovoltaic microgrid systems that
this data is taken from. It will also describe some of the notable
features in the data.

A. Data collection

We have installed 17 solar photovoltaic microgrid systems
with remote connectivity using Short Message Service (SMS)
over the Global System for Mobile Communications (GSM)
networks in Mali and Uganda as described in [2]. These
systems allow customers to purchase bundles of electricity in
advance of use either through a scratch card and cell phone
purchase or through a tablet device. Each of these systems
consists of a 1.4 kWp array of photovoltaic panels with a
48 V, 360 Ah battery bank. An MPPT charge controller
handles battery charging and a 750 W inverter supplies the
microgrid with 50 Hz, 220 V power. Up to 20 customers
are connected to these systems in a star topology where each
customer has a dedicated wire to the central facility. Each
customer is metered by a commercially available device that
allows for energy measurement and reporting and a switch to
automatically connect or disconnect the consumer. In addition
to communication regarding the purchase of power, these
systems send data on an hourly basis to a central server using
SMS messages. Data is collected on the energy consumption
of each household as well as the AC energy consumption of
the entire system. From the solar controller, we measure and
store hourly information on the solar energy delivered to the

system and the battery voltage. This data stream allows us to
observe consumer usage and payment behavior.

B. Timeseries Description

These messages allow us to create a database of timeseries
information from the customers. In this paper we focus on
data from a few microgrids in Mali that are representative
of the demand from rural residential customers. In these
residential settings, the most common appliances are light
bulbs, cellphones, and televisions. Consequently, the peak
power is consumed in the evening as shown in Figure 6.
Customers in these microgrids were provided with two light
bulbs as part of the installation. In Figure 6, the two bands
in the evening show that usage clusters around these values.
Most of the customers have little or no usage during the day
time.
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Fig. 6. Customer exhibiting two bulb lighting load. Each data point is
the hourly load for a single day. Multiple days are superimposed. Points
are transparent so that frequent measurements appear darker. This customer
displays two common evening power levels corresponding to the use of one
or two lightbulbs. This not that this customer has very small power use during
the day.

The addition of daytime loads can reduce the percentage of
variation in demand. In two microgrid systems, freezers have
been installed that customers are using to sell ice or frozen
drinks. These freezers significantly increase the daytime load
on the system. The hourly profile for the household using this
freezer is shown in Figure 7. These freezers draw a much
larger amount of power than the typical lighting load and have
a lower variation when measured on an hourly basis.
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Fig. 7. Circuit with freezer. Each data point is the hourly load for a single
day. The absolute variation in power is still significant but the ratio between
high and low use is lower.

C. Load Duration Curves

To visualize the variation in load, we use a load-duration-
curve to summarize the load demanded by the microgrid. If
we sort the hourly power demand over a long time period,
we construct a load duration curve [3]. A load-duration curve
(Figure 8) shows this variation. In the microgrid that does
not have a freezer, the most common power level is less than
50W, which is well below the peak efficiency of the inverter.
For the system that does have a freezer, the system spends
the bulk of its time consuming on the order of 200W, which
is much closer to the peak efficiency operating point of the
inverter. The inverter is sized so that the maximum customer
load is safely accommodated by the inverter. However, there
is a substantial efficiency penalty for operating the inverter
below the optimal point.

We can express these loads in terms of the capacity factor,
where the capacity factor is relative to the rated output of
the inverter. Systems with high power variability will lose
efficiency since the system will often be operated outside of
the range of peak efficiency.

D. Overall System Efficiency

We can estimate an overall system efficiency from the
system-wide usage data and information from the solar con-
troller on photovoltaic energy generation. This estimate of
the overall efficiency of the system is defined as DC power
delivered by solar power controller divided by the AC power
delivered to the system to power both the system electronics
and the user loads. Our data shows that as the capacity factor of
the inverter increases, the overall system efficiency improves.
In sites with a freezer and therefore considerable daily load,
the inverter capacity factor is approximately 30% and we see
an overall efficiency of 0.88–0.90. In a lighting only site, with
much less daily load, the capacity factor is less than 15% and
the overall efficiency is less than 0.70. The large variations in
loads exhibited by these customers prompted us to investigate
the impact on system efficiency that these variations in loads
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Fig. 8. Load duration curve for two typical microgrid systems, includ-
ing metering, computing, and computation. Inverter and charge controller
consumption is not included. One system includes a significant daytime
refrigeration load, while the other does not.

are causing.
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